## Biological Roles of Non-coding RNA

Non-coding RNAs other than tRNA and rRNA were initially considered to be "genomic junk" since they did not encode proteins. However, their roles in regulating gene expression were discovered over the past few decades and continue to be extensively researched. Based on their length, non-coding RNAs may be classified as small regulatory RNAs (< 100)

nucleotides) or long non-coding RNAs (> 200 nucleotides). Both small regulatory RNAs (> 200 nucleotides) and stages of the small regulatory RNAs (> 200 nucleotides) are small regulatory RNAs (> 200 nucleotides). nucleotides) or long non-coding KNAS (> 200 Masses and the state of transcription of protest management of pro long non-coding RNAs regulate gene expressions and translation. Non-coding RNAs affect mRNA splicing—removal of protein non-coding RNAs affect mRNAs and translation. Non-coding RNAs affect into a segments and joining the protein coding sequences. In this manner, they control the form segments and joining the protein county segments are segments. of different protein variants from a single so (miRNAs) bind to complementary sequences on miRNAs) and small interfering RNAs (siRNAs) bind to complementary sequences on miRNAs) (mikNAs) and small interfering kills (blacking the access of the translation machinery and inhibit protein synthesis either by blocking the access of the translation machinery mRNA or by degrading the mRNA itself. Long non-coding RNAs interact with and re enzymes that chemically modify DNA and histones (proteins that help package DNA the nucleus) to either activate or repress transcription. RNA-mediated regulation of expression is widespread in bacteria. Regulatory sequences in mRNA called riboswin act as environmental sensors by detecting changes in temperature and nutrient le Riboswitch-based regulation depends on the formation of two mutually exclusive and si conformations of the RNA secondary structure. The secondary structure switches between two conformations to turn gene expression on or off in response to environmental changes, example, when the bacteria Listeria monocytogenes infects a host, the higher body tempera of the host breaks down the secondary structure in the 5' untranslated region of the bacter mRNA. This exposes a ribosome-binding site on the mRNA and initiates protein translate enabling the bacteria to live and grow within the host organism. Some riboswitches detect products of metabolic pathways and serve as feedback controls for transcription or translati For instance, the thiamine pyrophosphate riboswitch regulates thiamine biosynthesis in bacter When an adequate concentration of thiamine has been synthesized, it binds to the riboswit and changes its conformation. This change in conformation blocks the translation initiations and stops protein synthesis. Compounds that closely resemble thiamine in structure are being studied as potential antibacterial agents. These drugs are intended to bind the riboswitch in absence of thiamine and cause a conformational change that blocks the translation of protein required for thiamine biosynthesis. Since the bacteria will be unable to produce this nutrient, will stop growing and eventually die. As riboswitches are more commonly found in prokaryold than eukaryotes, riboswitch-targeting antibacterials would have minimal adverse effects mammalian hosts.